2016.1.5 第4回CMSI人材育成シンポジウム

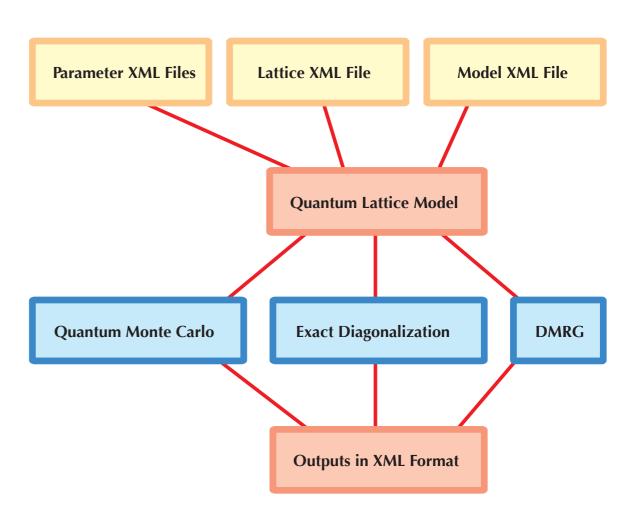
「高度計算科学技術を有する人材が活躍する社会を目指して ~国際競争力強化のためのICTの浸透~」

大学における計算機教育とHPC

藤堂眞治

東京大学大学院理学系研究科 / 物性研究所

wistaria@phys.s.u-tokyo.ac.jp


どのような立場からの話か?

- ・藤堂眞治(とうどうしんじ) 東京大学大学院理学系研究科 / 物性研究所
 - ・CMSI重点課題「相関の強い量子系の新量子相探索とダイナミックスの解明」 研究担当者
 - ・大規模並列量子モンテカルロ法ALPS/looper開発
 - ・量子多体系シミュレーションのためのオープンソースソフトウェアALPS開発者
 - ・CMSI広報小委員会代表・(元)神戸拠点代表
 - ・人材育成・分野振興活動: アプリ講習会、若手技術交流会、MateriApps運営
 - 東京大学理学部物理学科教員
 - 学部講義「計算機実験」担当

ALPS プロジェクト

ALPS = Algorithms and Libraries for Physics Simulations

- ・量子スピン系、電子系など強相関量子格子模型のシミュレーションのためのオープン ソースソフトウェアの開発を目指す国際共同プロジェクト
- ALPS ライブラリ = C++による格子模型の ための汎用ライブラリ群
- ALPS アプリケーション = 最新のアルゴリ ズムに基づくアプリケーション群: QMC、 DMRG、ED、DMFT 等
- ALPS フレームワーク = 汎用入出力形式、 解析ツール、スケジューラなど、大規模並 列シミュレーションのための環境

ALPS の生まれた背景

- 「コミュニティーコード」の不在
 - ・ 個々の研究者が独自のコードを作成・使用
 - ・扱うモデル・格子毎にコードを作成
 - コードの再利用がほとんどなされない
- アルゴリズムが複雑化
 - 様々な新しいアルゴリズムの開発
 - ・プログラム開発の長期化
- 理論家/実験家による使い易く、 信頼性の高いシミュレーション パッケージへの強い 要望
- ・(non-portableな) 独自形式による入力・出力の弊害

ターゲット・オーディエンス

• 実験家

- ・物質のモデリングにソフトウェアパッケージを利用
- ・実験結果とシミュレーション結果のフィッティングにより、相互作用定数などを 決定

• 理論家

- 理論的なアイデアのチェックに使いやすい整備されたコードを利用
- 自前のコードのデバッグに
- 新しいコード開発の基盤としての利用
- 計算機科学者、学生、・・・

ALPS の特徴

・任意の格子

- ・XML フォーマットによる格子構造の定義
- ・ ユニットセルの繰り返しによる格子生成
- ・格子を任意の有限グラフ (頂点と辺の集合) として定義することも可能
- ・任意のハミルトニアン (模型)
 - ・XML フォーマットによる量子数、演算子の定義
 - 数式によるハミルトニアンの定義
- ・様々な<mark>最新の</mark>解法 (アプリケーション): ED、CMC、QMC、DMRG、DMFT
- ・全ての ALPS アプリケーションに共通の入力形式
- ・汎用的な出力形式、Python による解析・グラフ作成ツール

主要技術

- XML、HDF5による入出力
 - ・可搬性 (ポータビリティ)
 - 出力結果の変換が容易・内容が一目瞭然
- C++ ジェネリックプログラミング
 - · 柔軟性 · 再利用性
 - ・高品質なコードの作成
- C++ 標準ライブラリ、Boostライブラリ、サードパーティーライブラリの利用
 - 開発のスピードアップ
 - 様々な標準アルゴリズム
- MPI + OpenMP による並列化
- ・スクリプト言語(Python)によるポスト処理
- 国際共同作業のためのインフラストラクチャー
 - オープンソースのツールの利用

「公開ソフト」への長い道のり

- ・ソースコード
- ・ビルドシステム
 - ・テストスイート
 - ・チュートリアル
 - Webページ
 - ユーザサポート
 - ライセンス
 - •アプリ名
 - □□
 - ・ドキュメント
 - 講習会、、、、、、、

開発・普及に役立つツールや仕組みの利用

- GitHub、SourceForge、SlideShare、YouTube
- MateriApps http://ma.cms-initiative.jp/
 - MateriApps web
 - MateriApps LIVE!
 - MateriApps Installer
 - MateriApps Cloud (coming soon?)
- ・コミュニティーによるサポート
 - CMSIハンズオン開催サポート
 - ・物性研 ソフトウェア高度化プロジェクト

MateriApps - 物質科学シミュレーションのポータルサイト

・公開ソフトウェア(アプリケーション)を核としたコミュニティー形成をめざして

- 155の物質科学アプリケーションや ツールを紹介(2015年9月現在)
- 「やりたいこと」からアプリケーションを検索
 - 検索タグ:「特徴」「対象」「手法・ アルゴリズム」
- ・開発者の声を利用者に届ける
 - ・アプリ紹介、開発者ページ、アプリの魅力・将来性・応用性
- ・フォーラム(掲示板)を利用した意見交換
- ・講習会情報・web講習会・更新情報
- ・月間 8000 ページビューにまで成長

2013年5月公開

12

MateriApps 掲載アプリケーション

・155の物質科学アプリケーションやツールを紹介 (2015年9月現在)

密度汎関数法

AkaiKKR☆

OpenMX[☆]

xTAPP☆

ABINIT☆

.. (37)

量子化学

FMO☆

SMASH☆

GAMESS☆

DC☆

.. (19)

(8)

分子動力学

MODYLAS☆

Gromacs☆

ERmod☆

MDACP

... (19)

格子模型

ALPS

DSQSS

BLOCK

DMRG++

. (22)

連続体シミュレーション

ANSYS Multiphysics

Octa ...

データ解析

CLUPAN☆

phonopy[☆] (26)

可視化

fu☆

TAPIOCA[★](28)

☆ MateriApps LIVE! 収録 (一部予定) アプリ

MateriApps 活動の目的

- 開発者側の問題点
 - 有益なプログラムはもっと使われるべきだが、多くのソフトは研究室内にとど まって終わる
 - ・公開・情報発信には手間がかかる
 - ・アプリ開発を成果として主張しにくい(指標がない)
- 利用者側の問題点
 - どんなプログラムがあるのかよくわからない
 - インストール・使い方について知りたい
 - ・開発者の活動(特に講習会情報)をもっと知りたい
- 両者をつなぐ役割を果たしたい

アプリケーション普及にむけた三本柱

- アプリの情報発信
 - ポータルサイト MateriApps web
- ・スパコン上でのアプリ利用支援
 - 「京」や国内主要スパコンへのアプリのプレインストール MateriApps Installer
- 個人・研究室レベルでのアプリ利用の支援
 - MateriApps LIVE!
- インストールや入力ファイルの準備における「壁」を解消
- ・計算科学の専門家だけではなく、実験家や企業内の利用、教育活動における活用へ

MateriApps 活動を通じて感じたこと

- ・(第一原理計算に限ったとしても)いろいろなアプリを俯瞰的に見られる人材の欠除
- ・MateriAppsなどで組織的にサポートできることとできないことがある
- ・公開ソフトとして体をなしていないソフトも多数
 - ・ユーザー視点の欠除 (ドキュメント、サポート)
 - そもそも「プロジェクト」「プロダクト」という感覚がない。学んだこともない

大学における計算機教育の現状 (1/2)

- ・計算科学アライアンス
 - ・東大内の(現時点では)非公式な組織
 - 工学系、理学系、情報理工、情報基盤センター、新領域、物性研、他から参加
 - ・とりまとめ 今田先生(東大院工)
 - ・学内の計算機教育の現状と共通シラバス、共通して使える講義資料の取りまとめ 作業に着手
 - ・ 複数の部局でバラバラに教えているもの
 - UNIX、C言語、Fortran
 - ・計算機の数値表現、Newton法、補完・加速、数値微分、常微分方程式、線形方程式(直接法・反復法)、偏微分方程式、固有値問題(密行列・疎行列)、乱数、モンテカルロ積分

UNIXの基礎				0						0								0				
Cプログラミングの基礎	0			0					0	0												
Fortarn											1							0				
LaTeX			1							0												0
Scilab																						0
バージョン管理										0												
数値の表現・誤差	0	0	0							0	0		0			0		0				0
二分法·Newton法·代数方程式	0	0	0	1						0	1		0			0		1		0		0
ソート・サーチ											0											
関数値の計算	0		1																			
関数の補完・近似	0	0	0										0		1	0				0		
直交多項式																0				0		
数值積分	0	0	0										0			0				0		0
加速法	0															0						
常微分方程式	0	0	0							0			0			0		0		0		0
線形方程式(直接法)	0	0	0	0						0		0	0			0	0	0		0		
線形方程式(反復法)	0	0		0						0			0							0		0
共役勾配法										0				0						0		
偏微分方程式	0			0						0			0	0				0			0	
固有値問題(密行列)	0			0						0			0						0			
固有値問題(疎行列)	0	0	0	0						0			0			0		0	0			
特異値分解										0												
BLAS/LAPACK										0		0						0				
乱数										0	0					0						
回帰分析・ベイズ推定										0	0					0						
モンテカルロ積分										0	0			0								
мсмс										0	0			0				0	0			
確率微分方程式														0								
変分モンテカルロ																			0			
分子動力学法											0											
第一原理計算																			0			
エネルギー最適化																			0			
Ewald和																			0			
連続最適化問題										0												
離散最適化問題										0	0											
線形計画法											0											
FFT																0			0			
有限要素法					0	0								0							0	
楕円形偏微分方程式																					0	
並列プログラミングとは										0		0			0			0				L
並列アルゴリズム															0							
MPI					0		0					0			0			0				
MPI (有限要素法)			1		0		0				<u> </u>											
MPI(LU分解)												0										
MPI (グラムシュミット)																		0				
MPI (変分モンテカルロ)																			0			
ハイブリッド並列 (有限要素法)					0																	
有限体積法								0														
OpenMP								0				0			0			0				
OpenMP (有限体積法)								0														
GPGPU•CUDA															0							
高速化																		0				
自動チューニング												0										
スパコン実習												0										
キャッシュメモリ・ブロック化												0										

大学における計算機教育の現状 (2/2)

- 情報基盤センターなど一部の部局が中心になって教えているもの
 - ・並列計算(MPI, OpenMP)、チューニング、スパコン実習、他
- あまり系統的に教えられてないもの、全く教えられてないもの
 - ・最適化問題、データ解析、プログラム開発手法、デバッグ手法、プロジェクト・ ソースコード管理

• 問題点

- 計算機科学、自然科学、情報科学がそれぞれ専門化・細分化
- ・ 各分野の教員が片手間に計算機教育
- ・並列計算、大規模ソフトウェア開発がほとんど教えられていない
- ・シラバスが計算機科学・計算科学の現状に追いついていない
 - ・最適化問題やグラフアルゴリズム、社会科学分野・企業での計算機活用、など

新しい計算機学部教育の試み

- 東京大学理学部物理学科 学部3年夏学期「計算機実験」
- これまでの経緯
 - 「物理学実験 I」の一つの枠として「計算機実験」があった
 - ・ 週3日午後 x 2週、20人程度のグループ
 - ・初回にTAが簡単な説明、それ以外は実習の時間、2週間後にレポート提出
 - 内容: UNIX操作、C言語、LaTeX、常微分方程式
- ・2015年度から
 - ・計算機教育の強化についての強い要望 (特に実験系の先生方から)
 - ・「計算機実験」として独立した講義に(週1コマx半年)
 - ・物理学科3年夏学期・必修
 - ・座学(教員1名) + 実習(助教2名・TA2名)形式に

「計算機実験」

- ・講義・実習形式
 - ・全体を2グループに分けて講義・実習を隔週で行う
- ・講義(L1~L8)
 - ・実習で必要となる基礎的な事項・アルゴリズム+より高度な話題
- ・実習(EX1~EX6): 情報基盤センター大演習室
 - ・端末を使ったプログラミング実習準備練習 + 基本課題 + 応用課題(オプション)
- レポート (計3回)
- •3~4人のグループに分け、グループワーク
 - ・最終週に成果発表会、レポート

	グループX	グループY
第1週	L1	L1
第2週	EX1	L2
第3週	L2	EX1
第4週	EX2	L3
第5週	L3	EX2
第6週	EX3	L4
第7週	L4	EX3
第8週	L5	EX4
第9週	EX4	L5
第10週	L6	EX5
第11週	EX5	L6
第12週	L7	EX6
第13週	EX6	L7
第14週	L8	L8

	講義(L)	実習(EX)
1	講義・実習の概要、数値誤差、数値微分、ニュートン法、 代数方程式	リモートログイン、ファイルコピー、UNIX操作、エディタ、コンパイル、C言語、フィボナッチ数列、数値微分、ニュートン法 [テント写像、代数方程式]
2	<mark>バージョン管理システム</mark> 、常微分方程式の初期値問題、 Euler法、Runge-Kutta法、陰解法、シンプレクティック積 分法	バージョン管理システム、グラフ作成、LaTeX、摩擦のあるバ ネ問題、中点法・3次・4次Runge-Kutta [シンプレクティック積 分法、硬い方程式]
3	Poisson方程式の境界値問題、連立一次方程式、Gaussの消去法、LU分解、反復法、Jacobi法、C言語におけるベクトルと行列、LAPACK	Gaussの消去法、LU分解、LAPACK、C言語におけるポインタ、ピボット選択、境界条件の設定、Jacobi法 [Gauss-Seidel法・SOR法、LAPACKとMKL]
4	Schrödinger方程式の解法、Numerov法、行列の対角化、 Jacobi法、Givens変換、Hermite行列、べき乗法、 Rayleigh-Ritzの方法、Lanczos法	ハウスホルダー法、固有ベクトルの直交性、べき乗法、二重井 戸ポテンシャルの固有状態、単位と無次元化 [Lanzos法、疎行 列に対する方法、Frank行列]
5	特異値分解、連立方程式の最小二乗解、行列の低ランク近似、画像圧縮、線形回帰分析、Ridge回帰、カーネル法、 Bayes推定	特異値分解、最小二乗フィッティング、CとFortranのバインディング、行列の低ランク近似、基底関数の追加、LU分解と特異値分解 [最小二乗法における誤差の評価、画像圧縮、実験
6	最適化問題、囲い込み法、最急降下法、共役勾配法、 Nelder-Mead法、 <mark>乱択アルゴリズム</mark> 、モンテカルロ積分、 重点的サンプリング、擬似乱数	最適化問題、囲い込み法、最急降下法、Nelder-Mead法、擬似 乱数、モンテカルロ積分
7	MCMC、離散最適化、スパコンと計算物理	
8	グループワーク発表会	

「計算機実験」における試み

- 実習環境
 - 情報基盤センター端末 + UNIXサーバ + 仮想マシン配布(MateriApps LIVE!)
- ・ 伝統的な線形計算に加え、現代的な項目も追加
 - ・バージョン管理システム、ライブラリの利用、特異値分解、最適化問題、ベイズ推 定、スパコンと並列計算
- ・バージョン管理を身につけるために、レポート(LaTeX)もバージョン管理を義務付ける
- ・座学と実習を半々に
- ・4人程度のグループに分け、自分たちでテーマ を選んで「問題解決」に取り組む。最終回に 発表会を実施

X1	ンミュレーナット・アーーリングを用いた一次元インング 候空 の解析
X2	硬い方程式とその解法
Х3	二重振り子のRunge-Kutta法による解析とアニメーション
X4	乱数を用いたブラウン運動の観察
X5	ロジスティック方程式の差分化とカオス
X6	シンプレクティック積分法による振り子の解析
X7	シンプレクティック積分法(仮題)
X8	テント写像によるカオスの生成
X9	Lanczos法で固有値を求める
Y1	パーコレーションモデルを用いた伝染病の解析
Y2	非線形フィッティングによる内部抵抗の推定
Y3	液体のシミュレーション
Y4	SVD分解による画像ファイルの圧縮
Y5	ルンゲクッタ法による三体問題の8の字解の導出
Y6	Gauss-Seidel法とSOR法
Y7	いろいろな分布に従う乱数の発生
Y8	ホップフィールドネットワークによる連想記憶
VO	フェラフ連鉛エンテカェロ注にトスソン増刑の級垢

- ・学生からのフィードバック (授業アンケート他)
 - ・授業の準備状況や教員の熱意は平均より高く評価されている
 - 難易度:高、進度:速
 - 「例題のソースコードを読むのが大変だった。最初から自分で書く方がよい」
 - 「バージョン管理システムに興味があったが、一回の講義・実習で実際に使えるようになるとは思わなかった」
 - 「五月祭の発表で、スパコンを使った並列計算にチャレンジしてみたい」
- ・追加で、秋に4年生以上むけのインフォーマルな講義を実施
 - ・三日間で短縮版の講義 + 実習
 - ・単位なし、他学科、他専攻の学生も受講可
 - ・(自主的に) 55名が受講

おわりに

- HPCの裾野拡大のためには、長期的な視点にたった学部教育の充実が必要
 - ・HPCを仕事とする人だけでなく、政策立案者、意思決定者、あるいはその側に現 代的な計算機教育を受けた人が必要
- 現状ではシラバスは学科によってバラバラ。ある程度の統一と全体像の整理が必要
- ・ 現代的な観点からの計算機教育の再構築が必要
 - ・最適化問題、グラフ探索、データ解析、統計処理
 - ・ 社会科学分野での応用
 - ・企業でのシミュレーション活用を視野にいれた教育
 - ・計算機を使った問題解決の体験
 - ・プロジェクト管理・ソースコード管理は研究倫理の観点からも重要