シミュレーションが 未来をひらく

CMSI計算科学技術 特論 B

第4回 アプリケーションの性能最適化の実例1

2014年5月8日

独立行政法人理化学研究所 計算科学研究機構 運用技術部門 ソフトウェア技術チーム チームヘッド

> 南一生 minami_kaz@riken.jp

RIKEN ADVANCED INSTITUTE FOR COMPUTATIONAL SCIENCE

スーパーコンピュータとアプリケーションの性能 アプリケーションの性能最適化1(高並列性能最適化) ・アプリケーションの性能最適化2(高並列性能最適化) アプリケーションの性能最適化の実例1 ・アプリケーションの性能最適化の実例2

内容

理研で進めた性能最適化 RSDFTの性能最適化 PHASEの性能最適化

 本資料は、理化学研究所AICS運用技術部門ソフトウェア技術チーム、 長谷川幸弘氏、黒田明義氏の発表データを使用して作成しています。

6本のターゲットアプリ

プログラム名	分野	アプリケーション概要	期待される成果	手法
NICAM	地球 科学	全球雲解像大気大循環 モデル	大気大循環のエンジンとなる熱帯積雲対流活動を精 緻に表現することでシミュレーションを飛躍的に進化さ せ,現時点では再現が難しい大気現象の解明が可能 となる.(開発 東京大学,JAMSTEC,RIKEN AICS)	FDM (大気)
Seism3D	地球 科学	地震波伝播・強震動 シミュレーション	既存の計算機では不可能な短い周期の地震波動の解 析・予測が可能となり、木造建築およびコンクリート構 造物の耐震評価などに応用できる.(開発 東京大学 地震研究所)	FDM (波動)
PHASE	ナノ	平面波展開第一原理 電子状態解析	第一原理計算により、ポスト35nm世代ナノデバイス、 非シリコン系デバイスの探索を行う(開発 物質・材料 研究機構)	平面波 DFT
FrontFlow/Blue	工学	Large Eddy Simulation (LES)に基づく非定常流 体解析	LES解析により、エンジニアリング上重要な乱流境界 層の挙動予測を含めた高精度な流れの予測が実現で きる.(開発 東京大学生産技術研究所)	FEM (流体)
RSDFT	ナノ	実空間第一原理電子状 態解析	大規模第一原理計算により, 10nm以下の基本ナノ素 子(量子細線, 分子, 電極, ゲート, 基盤など)の特性解 析およびデバイス開発を行う.(開発 東京大学)	実空間 DFT
LatticeQCD	物理	格子QCDシミュレーショ ンによる素粒子・原子核 研究	モンテカルロ法およびCG法により,物質と宇宙の起源 を解明する.(開発 筑波大)	QCD
14年5月8日 CMSI計	算科学技	技術 特論B		@ 💙 `

5

K computer

コラボレーション

東京大学,JAMSTEC 東京大学地震研究所 物質·材料研究機構 東京大学生産技術研究所 筑波大 RIKEN AICS

計算機科学 (理研)

6本のターゲットアプリの計算機科学的な位置づけ

RSDFTの性能最適化

RSDFTとは

- ナノスケールでの量子論的諸現象を第一原理に立脚して解明し新機能を有するナノ物質・構造を予測
- 例えば・・・

RSDFTの原理

Kohn-Sham方程式

電子密度
$$n(\mathbf{r}) = |\sum_{i} |\varphi_{i}(\mathbf{r})|^{2}$$

 $\left[-\frac{1}{2}\nabla^{2} + v_{nucl}(\mathbf{r}) + \int \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' + \frac{\delta E_{xc}[n]}{\delta n(\mathbf{r})}\right] \varphi_{i}(\mathbf{r}) = \varepsilon_{i} \varphi_{i}(\mathbf{r})$
 $N \equiv \mathcal{N} \vdash \mathbb{P} \mathcal{V}$
 $\varphi_{i}: 電子軌道 (=波動関数)$

i:電子準位(=エネルギーバンド) r:空間離散点(=空間格子)

 $H\varphi_i(r) = \mathcal{E}_i\varphi_i(r) \quad \text{Batis for a state of the set of the s$

RSDFTの原理

2014年5月8日 CMSI計算科学技術特論B

RSDFTの計算フロー

RSDFTの計算フロー

J.-I. Iwata et al., J. Comp. Phys. (2010)

スレッド並列化 キャッシュの有効利用

B/F値 =移動量(Byte)/演算量(Flop) =(N²+N)/2N² ≒1/2

原理的には1/Nより大きな値

B/F値 =移動量(Byte)/演算量(Flop) =2N²/2N³ =1/N **原理的にはNが大きい程小さな値**

2014年5月8日 CMSI計算科学技術 特論B

GramSchmidt直交化の行列積化

ψ' ₁ =	Ψ_1							
ψ ₂ ' =	$\psi_2 = \langle \psi_1' \psi_2 \rangle \psi_1' \rangle$		_					
ψ' ₃ =	$\psi_{3} - \langle \psi_{1}' \psi_{3} \rangle \psi_{1}' \rangle -$	$\left< \psi_{2}^{\prime} \psi_{3} \right> \psi_{2}^{\prime} \right>$. 7	オリジ	ナルは	行列べ	シトル	積
$\psi_4' =$	$\psi_{4} = \langle \psi_{1}^{\prime} \psi_{4} \rangle \psi_{1}^{\prime} \rangle -$	$\left<\!\psi_2'\left \!\psi_4\right>\!\!\left \!\psi_2'\right>\!\!-$	$\left<\!\!\psi_3' \left \!\!\psi_4\right>\!\!\!\left \!\!\psi_3'\right>\!\!\!\right>$	•				
ψ' ₅ =	$\psi_{5} - \langle \psi_{1}^{\prime} \psi_{5} \rangle \psi_{1}^{\prime} \rangle^{-}$	$\left<\!\psi_{2}^{\prime}\left \!\psi_{5}\right>\!\!\left \!\psi_{2}^{\prime}\right>\!\!-$	$\langle \psi_3' \psi_5 \rangle \psi_3' \rangle -$	$\left< \psi_4' \left \psi_5 \right> \right \psi_4' \right>$				
ψ' ₆ =	$\psi_{6}-\langle\!\psi_{1}^{\prime} \!\psi_{6}\rangle\! \!\psi_{1}^{\prime}\rangle\!-$	$\left<\!\psi_2^{\prime} \left \!\psi_6\right>\!\!\left \!\psi_2^{\prime}\right>\!\!-$	$\left<\!\psi_3' \left \!\psi_6\right>\!\!\left \!\psi_3'\right>\!-$	$\left< \psi_{4}^{\prime} \left \psi_{6} \right> \right \psi_{4}^{\prime} \right> -$	$\left< \psi_5' \psi_6 \right> \psi_5' \right>$			
ψ' ₇ =	$\psi_{7} = \langle \psi_{1}' \psi_{7} \rangle \psi_{1}' \rangle^{-}$	$\left<\!\psi_2^{\prime} \left \!\psi_7\right>\!\!\left \!\psi_2^{\prime}\right>\!\!-$	$\left<\!\psi_3' \left \!\psi_7\right>\!\!\left \!\psi_3'\right>\!-$	$\left< \psi_4' \left \psi_7 \right> \right \psi_4' \right> -$	$\langle \psi_5' \psi_7 \rangle \psi_5' \rangle^{-}$	$\left< \psi_6' \left \psi_7 \right> \right \psi_6' \right>$		
ψ'_8 =	$\psi_{8} - \langle \psi_{1}^{\prime} \psi_{8} \rangle \psi_{1}^{\prime} \rangle^{-}$	$\left<\!\psi_2^{\prime} \left \!\psi_8\right>\!\!\left \!\psi_2^{\prime}\right>\!\!-$	$\langle \psi_3' \psi_8 \rangle \psi_3' \rangle$ -	$\left<\!\psi_4^{\prime}\left \!\psi_8\right>\!\!\left \!\psi_4^{\prime}\right>\!-$	$\left<\!\psi_5' \left \!\psi_8\right>\!\!\left \!\psi_5'\right>\!-$	$\langle \psi_{6}' \psi_{8} \rangle \psi_{6}' \rangle -$	$\left< \psi_{7}' \left \psi_{8} \right> \right \psi_{7}' \right>$	•
ψ' ₉ =	$\psi_9 = \langle \psi_1' \psi_9 \rangle \psi_1' \rangle^-$	$\langle \psi_{2}^{\prime} \psi_{9} \rangle \psi_{2}^{\prime} \rangle^{-}$	$\langle \psi_3' \psi_9 \rangle \psi_3' \rangle^{-}$	$\left< \psi_4' \left \psi_9 \right> \right \psi_4' \right> -$	$\langle \psi_5' \psi_9 \rangle \psi_5' \rangle^-$	$\left< \psi_{6}' \left \psi_{9} \right> \right \psi_{6}' \right> -$	$\langle \psi_7' \psi_9 \rangle \psi_7' \rangle^-$	$\langle \psi_8' \psi_9 \rangle \psi_8'$
	•							

2014年5月8日

CMSI計算科学技術 特論B

※SDも同様に行列積化が可能

RSDFTの並列特性分析

2014年5月8日 CMSI計算科学技術特論B

RSDFTの並列特性分析(処理・演算量)

					ML:格子数,MB:バンド数
ルーチン		処理内容	演算量	高並列化性能	単体性能
DTCG	ML x ML 対称行列の 固有値, 固有ベクトル を共役勾配法で固有値 の小さいものから順に MB本求める.	レイリー商 minimize	$O(ML \times ML) \rightarrow O(N^2)$		
		$\frac{\langle \Psi_{m} H_{KS} \Psi_{n} \rangle}{\langle \Psi_{n} \Psi_{n} \rangle}$	O(N ²)		
GramSchmidt	規格直交化	$H_{m,n} = \langle \Psi_m H_{KS} \Psi_n \rangle$	$O(ML \times MB^2) \rightarrow O(N^3)$		
			O(N ³)		
DIAG	ML次元の部分空間に 限ってハミルトニアン の対角化をする.				
	行列要素生成 (MatE)	$\psi_{n}^{'}=\psi_{n}-\sum_{n=1}^{n-1}\psi_{m}\langle\psi_{m} \psi_{n}\rangle$	$O(ML \times MB^2)$ $\rightarrow O(N^3)$		
		<i>m</i> =1	$O(N^3)$		
	固有值求解 (pdsyevd)	$ \begin{pmatrix} H_{N,N} \end{pmatrix} \begin{pmatrix} \vec{c} \\ \vec{c} \end{pmatrix} = \epsilon \begin{pmatrix} \vec{c} \\ \vec{c} \end{pmatrix} $	O(MB3)→O(N3)		
		$\left(\begin{array}{ccc} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$	O(N ³)		
	回転 (RotV)	$\psi'_n(r) = \sum_{m=1}^N c_{n,m} \psi_m(r)$	$O(ML \times MB^2) \rightarrow O(N^3)$		
			20 O(N ³)		К солу

RSDFTの並列特性分析(コスト)

計算機 : RICC 8,000原子:格子数120x120x120,バンド数16,000 並列数 : 8x8x8(空間方向のみ) SCFループ1回実行の実測データからSCFループ100回として実行時間を推定

処理内容	コスト	演算	プロセス間通信
初期化 パラメータの読込み 全プロセスへの転送	0.4%		Bcast, Isend/Irecv
SCF部	99.6%	O(N ³)	
DO SCFループ(100回と仮定)			
DIAG	30.5%	O(N ³⁾ DGEMM中心	行列生成部: Reduce, Isend/Irecv(HPSI) 固有値ソルバー部: PDSYEVD内(Bcast) ローテーション:部分Bcast, 部分Reduce
DTCG	27.4%	O(N ²⁾ 演算<ロード	スカラー値のallreduce中心 Isend/Irecv(ノンローカル項/HPSI) Isend/Irecv(境界データ交換/BCSET)
GramSchmidt	38.6%	O(N ³⁾ DGEMM中心	Allreduce (内積,規格化変数)
Mixing, 途中結果の出力	3.1%		途中結果出力は毎SCFではないのでコストは もっと少
ENDDO			

2014年5月8日 CMSI計算科学技術特論B

演算時間の90%以上をBLASルーチン(DGEMM,DGEMV) が占めている

RSDFTの並列特性分析(ブロック毎のスケーラビリティ)

RSDFTの並列特性分析(ブロック毎のスケーラビリティ)

単位:秒

CMSI計算科学技術 特論B 2014年5月8日

RSDFTの並列特性分析(並列・単体性能)

					ML:格子数,MB:バンド数
ルーチン		処理内容	演算量	高並列化性能	単体性能
DTCG	ML x ML対称行列の 固有値, 固有ベクトル を共役勾配法で固有値 の小さいものから順に MB本求める.	レイリー商 minimize $\frac{\langle \Psi_m H_{KS} \Psi_n \rangle}{\langle \Psi_n \Psi_n \rangle}$	O(ML×ML) →O(N ²)	通信時間増大 演算時間と逆転 並列度の不足	行列ベクトル積 性能は悪い
GramSchmidt	規格直交化	$H_{m,n} = \langle \Psi_m H_{KS} \Psi_n \rangle$	O(ML×MB ²) →O(N ³) O(N ³)	通信時間減少せず 演算時間と同程度 並列度の不足	行列積化で良好
DIAG	ML次元の部分空間に 限ってハミルトニアン の対角化をする.				
	行列要素生成 (MatE)	$\psi'_{n} = \psi_{n} - \sum_{m=1}^{n-1} \psi_{m} \langle \psi_{m} \psi_{n} \rangle$	$\frac{O(ML \times MB^2)}{O(N^3)}$	通信時間増大 演算時間と同程度	行列積化で良好
	固有値求解 (pdsyevd) $\begin{pmatrix} H_{N\times N} \end{pmatrix} \begin{pmatrix} \vec{c}_n \end{pmatrix} = \epsilon \begin{pmatrix} \vec{c}_n \end{pmatrix}$		O(MB ³)→O(N ³) O(N ³)	並列度の不足 Scalapackのスケー	Scalapackの性能 が悪い
	回転 (RotV)	$\psi'_n(r) = \sum_{m=1}^N c_{n,m} \psi_m(r)$	O(ML×MB ²) →O(N ³) 24 O(N³)	ノビソノイ <i>小</i> 悉い 「 	行列積化で良好

ユニットセル(実際は3次元)

並列軸拡張の効果

- 並列軸を増やす事で空間の分割 粒度を増やすことが出来る
- 10万並列レベルに対応可能
- 空間並列のみの場合は全プロ セッサ間の大域通信が必要
- 通信時間の増大を招く
- 2軸並列への書換で空間に対す る大域通信が一部のプロセッサ 間での通信とできる
- バンドに対する大域通信も同様
 大域通信の効率化が実現可

RSDFTの高並列化-Gram-Schmidtの実装 -

RSDFTの高並列化 - 通信の見積りと効果の予測 -

空間+バンド並列版(S+B並列版)

●グローバル通信
 ▼ALLREDUCE
 >GramSchmidt:内積配列,規格化変数
 >DTCG:スカラー変数
 ✓REDUCE:
 >DIAG(MatE)
 ✓BCAST:
 >DIAG(RotV)
 >GramSchmidt:三角部で更新した波動関数を配送
 ✓ALLGATHERV
 >DIAG
 >GramSchmidt

■隣接通信
 ✓境界データの交換:BCSET
 ✓ノンローカル項計算:HPSI
 ✓対称ブロックデータの交換:DIAG(MatE)

RSDFTの高並列化 - 通信の見積りと効果の予測 -

	ルー	ーチン	通信パターン	型	通信サイズ	通信回数
Gra	amSc	hmidt	mpi_allgatherv	mpi_real8	MB/バンド並列数	1
ー :ハ	】 バンド方	「向の通信	mpi_allreduce	mpi_real8	NBLK*NBLK~ (NBLK1+1)*(NBLK1+1)	MB/NBLK*MB/NBLK/バンド並列数 + Int(log(NBLK/NBLK1)*(MB/NBLK/バンド並列数)
			mpi_allreduce	mpi_real8	NBLK1~1	NBLK1*(MB/NBLK/バンド並列数)
			mpi_allreduce	mpi_real8	1	MB/NBLK*MB/NBLK/バンド並列数 + Int(log(NBLK/NBLK1)*(MB/NBLK/バンド並列数) +NBLK1*(MB/NBLK/バンド並列数)
			mpi_bcast	mpi_real8	MLO*NBLK	MB/NBLK/バンド並列数
			allgatherv	mpi_real8	MB/バンド並列数	1
DIA	G		mpi_reduce	mpi_real8	MBLK*MBLK	(MB/MBLK * MB/MBLK)/バンド並列数
			lsend/irecv	mpi_rea18	MBLK*MBLK	1
			Scalapack(pdsyev d)内の通信は省略			
			mpic_bcast	mpi_real8	MBSIZE*NBSIZE	(MB/MBSIZE * MB/NBSIZE)/バンド並列数
	HPS	61	mpi_isend	mpi_rea18	1ma_nsend(irank)*MBLK	6*各方向の深さ*MB/MBLK/バンド並列数
			mpi_irecv	mpi_rea18	1ma_nsend(irank)*MBLK	6*各方向の深さ*MB/MBLK/バンド並列数
			mpi_waitall	-	-	MB/MBLK/バンド並列数
	BCSET		mpi_isend	mpi_real8	Md*MBLK	6*MB/MBLK/バンド並列数
			mpi_irecv	mpi_real8	Md*MBLK	6*MB/MBLK/バンド並列数
			mpi_waitall	_	_	MB/MBLK/バンド並列数
N	1B:バント 1BSIZE:1	[×] 数,NBLK:行列 MBxMB行列の列	x 行列で処理する最大サイズ,NB 方向のブロックサイズ MB K:mii	LK1:行列 x ベクト MBSIZE NBSIZ	ルで処理する最小サイズ, MBSIZE:N F) Md:高次差分の次数 Ima pser	IBXMB行列の行方向のブロックサイズ, K computer

RSDFTの高並列化 - 通信の見積りと効果の予測 -

	ルーチ	シ	通信パターン	型	通信サイズ	通信回数
DTCG	DTCG		mpi_allreduce	mpi_real8	MB_d	MB/MB_d/バンド並列数
			mpi_allreduce	mpi_real8	MB_d	MB/MB_d/バンド並列数
			mpi_allreduce	mpi_real8	MB_d	MB/MB_d*Mcg/バンド並列数
			mpi_allreduce	mpi_real8	MB_d*6	MB/MB_d*Mcg/バンド並列数
			mpi_allreduce	mpi_real8	MB_d	MB/MB_d*Mcg/バンド並列数
			mpi_allreduce	mpi_real8	MB	2
	precor	nd_cg	mpi_allreduce	mpi_real8	MB_d	MB/MB_d*Mcg/バンド並列数*3
		BCSET	mpi_isend	mpi_real8	Md*MB_d	6*MB/MB_d*Mcg/バンド並列数
			mpi_irec∨	mpi_real8	Md*MB_d	6*MB/MB_d*Mcg/バンド並列数
			mpi_waitall	_	_	MB/MB_d*Mcg/バンド並列数
	HPSI		mpi_isend	mpi_real8	1ma_nsend(irank)* MB_d	6*各方向の深さ*MB/MB_d *(Mcg+1)/バンド並列数
			mpi_irecv	mpi_real8	1ma_nsend(irank)* MB_d	6*各方向の深さ*MB/MB_d *(Mcg+1)/バンド並列数
			mpi_waitall	_	-	MB/MB_d*(Mcg+1)/バンド並列数
		BCSET	mpi_isend	mpi_real8	Md*MB_d	6*MB/MB_d*(Mcg+1)/バンド並列数
			mpi_irecv	mpi_real8	Md*MB_d	6*MB/MB_d*(Mcg+1)/バンド並列数
			mpi_waitall	_	_	MB/MB_d*(Mcg+1)/バンド並列数

MB:バンド数, MB_dバンドまとめ処理数, Md:高次差分の次数, Ima_nsend:ノンローカル項の数

2014年5月8日 CMSI計算科学技術 特論 B

RSDFTの高並列化 - 効果の確認 -

Weak Scaling 測定

タスクサイズ/プロセスを固定する. 格子サイズ:12x12x12,バンドサイズ:2,400 バンド方向の並列数は8で固定. 空間方向を並列数に比例して増加させる.

	原子数	格子数	バンド数	並列数
パターン1	512	48x48x48	19,200	512 (4x4x4x8)
パターン2	1,000	60x60x60	19,200	1,000(5x5x5x8)
パターン3	1,728	72x72x72	19,200	1,728(6x6x6x8)
パターン4	4,096	96x96x96	19,200	4,096(8x8x8x8)
パターン5	8,000	120x120x120	19,200	8,000(10x10x10x8)

T2K-Tsukubaで測定

RSDFTの高並列化 - 効果の確認 -

Weak Scaling 測定

RSDFTの高並列化 -Tofuネットワークへのマッピング-

RSDFTの高並列化 - Gram-Schmidtマッピングの効果-

RSDFTの高並列化 -マッピングの効果-

SiNW, 19,848 原子, 格子数:320x320x120, バンド数:41,472 トータル並列プロセス数は12,288で固定

RSDFTの高並列化-スケーラビリティ-

Figure 6. Computation and communication time of (a) GS, (b) CG, (c) MatE/SD and (d) RotV/SD for different numbers of cores.

2014年5月8日 CMSI計算科学技術特論B

37

総合性能

Table 2. Distribution of computational costs for an iteration of the SCF calculation of the modified code.

Procedure block		Execution	Computation		Dorformonco			
		time (s)	time (s)	Adjacent/grids Global/grids		Global/orbitals	Wait/orbitals	(PFLOPS/%)
SCF		2903.10	1993.89	61.73	823.02	12.57	.89	5.48/51.67
SD		1796.97	1281.44	13.90	497.36	4.27	_	5.32/50.17
	MatE/SD	525.33	363.18	13.90	143.98	4.27	_	6.15/57.93
	EigenSolve/SD	492.56	240.66	_	251.90	_	_	0.01/1.03
	RotV/SD	779.08	677.60	_	101.48	_	_	8.14/76.70
CG		159.97	43.28	47.83	68.85	0.01	_	0.06/0.60
GS		946.16	669.17	-	256.81	8.29	11.89	6.70/63.10

The test model was a SiNW with 107,292 atoms. The numbers of grids and orbitals were $576 \times 576 \times 180$, and 230,400, respectively. The numbers of parallel tasks in grids and orbitals were 27,648 and three, respectively, using 82,944 compute nodes. Each parallel task had 2160 grids and 76,800 orbitals.

Performance evaluation of ultra-largescale first-principles electronic structure calculation code on the K computer

Yukihiro Hasegawa et al., International Journal of High Performance Computing Applications published online 17 October 2013

PHASEの性能最適化

PHASEとは

- ナノスケールでの量子論的諸現象を第一原理に立脚して解明し新機能を有するナノ物質・構造を予測。この点はRSDFTと同じ。
- 例えば以下のような用途に用いる.
- •繰り返し構造を持つ結晶等の解析が得意.

電子状態計算(デバイス特性,エネルギー問題,反応・拡散),構造緩和

PHASEの原理

Kohn-Sham方程式

 $H\varphi_i(r) = \mathcal{E}_i\varphi_i(r)$

波数:Gによる展開

求めたい波動関数は未知の関数のため, 既知の関数の線形結合で記述する. PHASE では平面波基底を用いる.

$H\varphi_{ik}(G) = \varepsilon_i \varphi_{ik}(G)$

 φ_{ik} :電子軌道(=波動関数)

i:電子準位(=エネルギーバンド量子数)

G:波数格子

k:*k*点

▶ 繰り返しによる更新

PHASEの並列化

2014年5月8日 CMSI計算科学技術特論B

PHASEの並列特性分析(処理・演算量)

	種類	区間番号						
■カーネルの抽出	行列−行列積に書き換え可能	<mark>2,4,5</mark> ,9,10	O(N ³)					
	FFTを含む	1,3,6,7, <mark>8</mark> ,11	O(NlogN)					
抽出されたカーネルは以下の11区間. 区間1: V _{local} の逆FFT	対角化	9	O(N ³)					
区間2: $V_{nonlocal}$ を波動関数 ψ_{i} と eta の内積fに作用	₱							
区間3: V_{local} を波動関数 ψ_i に作用, 波動関数の	修正値Hψ _i を計算							
区間4: f _{ijt} =β • ψの計算								
区間5: Gram-Schmidtの直交化 区間6: 固有値計算, 波動関数ψ _i とf _i のバンド方	「向並べ替え							
区間7: 電荷密度計算								
区間8: V _{local} の逆FFT								
区間9: 行列対角化計算, 波動関数 ψ_i の修正								
区間10: f _{ijt} =β・ψの計算								
区間11: 電荷密度, ポテンシャル, 全エネルギー計算								

以上のカーネルを計算特性別に分類すると3つに分類が可能である.

PHASEの並列特性分析 (ブロック毎のスケーラビリティ)

区間2: $V_{nonlocal}$ を波動関数 ψ_i と β の内積fに作用

0

0

0

すでにこの並列度でスケールしていない.

原因は非並列部の残存.

区間4,10も同様

• 行列積カーネル 区間4: f_{ijt}=β・ψの計算

区間10: f_{iit}=β・ψの計算

- PHASEの処理ブロック:区間2を例に示す。
- 低並列でストロングスケールで測定.
- HfSiO₂ 384原子アモルファス系を測定

PHASEの並列特性分析(ブロック毎のスケーラビリティ)

■行列積カーネル 区間5: Gram-Schmidtの直交化

PHASEの並列特性分析(ブロック毎のスケーラビリティ)

0

Θ

0

■FFTカーネル 区間8: V_{local}の逆FFT

■対角化カーネル

- 対角化カーネル(区間9)
- HfSiO₂1,536原子, 5,120元アモルファス系で測定.
- 500並列以上で並列オーバーヘッドが測定された.

「京」

ScaLAPACKを含むカーネルの並列特性.

カーネル	512 (16x32)	1024 (16x64)	1536 (16x96)	2048 (16x128)
区間9(秒)	11.4	13.8	16.5	18.8
通信	0.0	0.0	0.0	0.0
BLAS	2.1	1.1	0.7	0.5
ScaLAPACK	8.8	12.0	15.1	17.5
他	0.5	0.7	0.7	0.8

2014年5月8日 CMSI計算科学技術特論B

■二軸並列化

■行列積カーネル

- 従来の非並列部を並列化できる.
- グラムシュミットの直交化処理のトランスバース転送が削減できる.

■二軸並列化

■行列積カーネル

- 分割粒度が大きくなる.
- ループの回転長が増えることで、並列性能が高まる.
- cf. バンド方向のループ長が1/9から1/3と3倍に増える.

■二軸並列化

- ■行列積カーネル
 - バンド方向の大域通信が一部のプロセッサに閉じるため通信
 時間の短縮が図れる.

■二軸並列化

■FFTカーネル

- オリジナルのFFTカーネルは波数方向に並列化されていなかった.
- そのためFFTに関する通信は発生していなかった.
- 二軸並列化に伴いFFTに関する通信が発生する.
- FFT通信の問題は全プロセッサ間の転置通信.
- 二軸並列化では通信は全プロセッサでなく一部のプロセッサに閉じる.

■二軸並列化

- この分野では小規模問題を短時間で計算したいという科学 的要求が高い。
- バンド計算(エネルギー準位など):1万原子の1回SCF収束 で良い~100SCF程度.
- 構造緩和(MD)や反応経路探索:外側に原子核の緩和に関するループ構造~100step程度.
- 10,000原子を10PFシステム(80,000ノード),また10,00
 原子を10,000ノードで計算する事を目指せる.
- ただし二軸並列はメリットとデメリットがあるため実施前
 に効果が期待できるか詳細な評価を実施した。

「京」

FX1

スレッド並列化 キャッシュの有効利用-行列積化

■二軸並列化

■行列積カーネル

- 行列積化されたカーネルに(区間2)ついての結果.
- HfSiO₂ 384原子アモルファス系のデータ.
- 大幅な性能向上を達成.

■二軸並列化

■FFTカーネル

- FFTを含むカーネルに(区間8)ついての結果.
- HfSiO₂ 384原子アモルファス系のデータ.
- ・性能向上を達成.

FX1 18 **[s]** 京」 50.0 50.0 original: other original: DGEMM 16 original: FFT 40.0 40.0 2-axis: other 14 2-axis: comm. 0.0[56c] 經過時間[56 2-axis: DGEMM 12 2-axis: FFT 10 8 10.0 10.0 6 0.0 0.0 32(2+10) 6x12+030 4 120(2+08) 16 32 64 128 10(2+8) 2 0 プロセス数 プロセス数 16 32 プロセス数⁶⁴ 128

2014年5月8日 CMSI計算科学技術特論B

57

■Scalapack分割数の固定

- ■対角化カーネル
 - 対角化はエネルギーバンド数の元を持つ行列が対象
 - 行列の大きさに比べて分割数が多すぎる
 - 分割数を16×16=256に固定

総合性能

- 「京」3,072並列にて, SiC 4,096原子計算に
 て,構造緩和(263MD, 2days).
- 「京」82,944並列にて、SiC 20,440原子計算にて、MSDソルバー効率 20.2 % (2.1 PFLOPS) 達成.

Kernel		Time [sec]	Efficiency of theoretical Peak	
SCF		39.78	20.11%	
	DGEMM	13.19	49.73%	
	FFT	14.46	7.86%	
	ScaLAPACK	12.31	3.88%	

「京」で測定した並列性能(SiC 3.800原子系)

まとめ

理研で進めた性能最適化 RSDFTの性能最適化 PHASEの性能最適化

