多分散レナード・ジョーンズ系における相図の粒度分布と温度依存性 東北大金研 CMRI¹、Boston Univ. Dept. of Chem.² <u>寺田弥生</u>¹、T. Keyes²、J. Kim²

材料科学における結晶材料(単結晶・多結晶)とガラス材料の特性の違いは、広く知られてい る。しかしながら、多結晶などの内部組織を含むミクロからマクロにいたるマルチスケールの材 料の構造や、多結晶などの複雑なダイナミクス、液体相からガラス相へと遷移する途中過程であ る過冷却液体状態で見られる複雑な緩和現象を伴うガラス相の形成過程のような時空間における マルチスケールにわたる材料科学の諸問題と材料特性の関係性についてはいまだ本質的な理解が なされていないところが大きい。そこで、本公演では、よく知られている12-6 レナード・ジョ ーンズ(LJ)タイプの粒子間相互作用を用いたモデルシステム系でのシミュレーションによって気 体・液体・結晶・ガラス相の相図について議論する。特に、粒子にコロイド粒子などでよく見ら れるガウス型の粒度分布(粒子サイズの分散)を与えることによって結晶化をさけた場合に、粒 子の大きさの違いのみ(図1)で、粒度分布と温度に対して、相転移点や相図などがどのように 変化するのかを明らかにする。

相図を効率的に求めるために、一次相転移近傍などの不安定なエネルギー状態にアクセス可能 な一般化されたレプリカ交換法[1]を用いた圧力一定の系のシミュレーションを行い、エンタル ピー・自由エネルギー・体積などの物理量を求めた。シミュレーションの結果得られた臨界点と 三重点の間の粒度分布-温度空間の相図の典型例(圧力 P=0.10 と 0.01)を図2に示す.高温領 域では、気体-液体の相転移点に粒度分布と圧力の影響が強く見られる。一方、低温側では、液 体-結晶相転移点とガラス相転移点にはほとんど圧力差は見られず、粒度分布の増大による結晶 相転移点の消失は、圧力によらず、粒度分布の標準偏差 0.15<s<0.20 の間に存在することが明ら かになった[2]。なお、研究会での講演では、臨界点以上の相図についても議論を行う。

文献

- [1] J. Kim, T. Keyes and J. E. Straub, **JCP** vol.132, 224107(2010).
- [2] Y. Terada, T. Keyes, J. Kim and M. Tokuyama, AIP Conf. Proc. vol.1518, p.776 (2013).